
The Doctor Is In
Using checkups to find bugs in produc6on

@rofreg
Hey there everybody!

Ryan Laughlin
@rofreg

@rofreg
My name is Ryan Laughlin, or @rofreg if you know me from the internet. I’m one of the
cofounders of Splitwise, which is an app for spliHng expenses with other people.

😊

@rofreg
Right out the gate, I want to say that I am super excited to be giving this talk. This is not only my
first RailsConf, this is the first conference talk I have EVER given!

And in par6cular, I’m really excited to give THIS talk. I’m really excited to talk about what I think
is a important gap in the way that we think about tes6ng and debugging our applica6ons, both in
the Rails community and beyond.

hNp://rofreg.com/talks

@rofreg
If you want to follow this talk at your own pace, or if you want to look back at it later, all the
slides are up at hNp://rofreg.com/talks.

Let’s go!

@rofreg
So with that said, let’s get right into it!

@rofreg
Let’s say you’re building a new feature for your app. You plan out all the details about how the
feature should work, and you think through all the edge cases and all the possible issues that you
might encounter.

@rofreg
Then you go and you actually write the code.
You might write a suite of tests to make sure that the feature works as intended.
You might do code review, so that your fellow developers can help you spot a poten6al bugs and
fix them.
You might have a staging server, or even a formal QA process, in order to catch as many bugs as
possible before something gets shipped.
You take your 6me and you fix every bug that you can find.
Now it’s 6me to deploy your code to produc6on, for the whole world to see.

Success!

@rofreg
Aaaaaand congratula6ons! You’re all done!

Success!
(probably…)

@rofreg
Well, I mean, MAYBE you’re done. I don’t know about you, but personally, I am someone who
occasionally makes mistakes. And quite oZen when I make an update to an app, I will miss some
minor bug or another, and I’ll end up deploying that bug to produc6on.

I mean, I’ve worked on the same one Rails app for 7 years now, and I have probably shipped
hundreds of bugs in that 6me.

If your code has bugs,
how will you know?

@rofreg
And so this is a ques6on that I ask myself a lot.
If my code has bugs in it, how would I even know?

And I want to be specific here.
Note that I am NOT asking how do we prevent bugs from happening in the first place.
I am asking how we DETECT those bugs WHEN they happen.

We should expect
our code to have bugs

in produc6on

IDEA #1

@rofreg
This is the first thing that I really want to hammer home.
We should EXPECT to make mistakes, and we should EXPECT to make mistakes in produc6on.

A quick show of hands: raise your hand if you have ever deployed something into produc6on.
Okay, now keep your hand raised if you’ve ever deployed something with a bug in it. Everybody,
right? Look around for a second. There are a lot of really good engineers in this room.
The best engineers that I know have ALL made these kinds of mistakes, and that’s NOT
something to be afraid of or ashamed of. It’s part of being a engineer. Making a mistake is a
chance to learn and to grow.
(You can put your hands down now.)

Tests will
save us!

@rofreg
Now, you might think: this is what tes6ng is for! Tests catch bugs so that we can fix those bugs
before we ship!

And tes6ng IS a really important step in that process. Tests are really good at ensuring that our
code generally works as expected, and they’re really good at protec6ng our code against
REGRESSIONS when we make updates.

Tests will
save us!

…some6mes

@rofreg
But tests don’t catch everything.
In fact, it’s sort of tautologically impossible for tests to catch everything!

Our code has bugs
that we can’t an6cipate

@rofreg
Because WE are the ones who write the tests, and most of the tests that we write are NOT
exhaus6ve. They only test a handful of cases.
And so if there’s an important edge case that we didn’t think about, then there may not be any
test for that edge case.

What about
code review,

or QA?

@rofreg
Now, you can improve your chances by including other people in your pre-release process,
whether it’s via code reviews or QA.
Other people can help you spot issues and problems that you might miss yourself.
And this is a super important part of development in my experience – 2 heads are almost always
beNer than 1.

Again, our code has bugs
that we can’t an6cipate

@rofreg
But again, it ul6mately has the same limita6ons.
Even a room full of very smart people are occasionally going to miss something.
Especially because it’s hard to hold an en6re system in your head, and to think about how all the
different parts of your app might interact with each other.

testing != production
IDEA #2

@rofreg
And that brings me to point #2!
Which is that your produc6on environment is UNIQUE.
Your produc6on environment is DIFFERENT than your test environment, or your development
environment, or even your staging environment, and that means that you may have bugs that are
UNIQUE to produc6on.

RAILS_ENV=test
@rofreg

Here’s one quick example.
If your app uses a database, I bet that most or all of your tests assume that the database is empty
at the start of the test, with no pre-exis6ng data.

RAILS_ENV=production
@rofreg

But that is NOT what your app experiences in produc6on!
In produc6on, you’re working with months or years of exis6ng data, and that can lead to edge
cases that you might completely overlook in your test environment.

And that’s just ONE way that those two environments differ.
There are always going to be differences between your local environment and your produc6on
environment, no maNer how much effort you put into making them the same.

We need to monitor
our produc6on environment

IDEA #3

@rofreg
So if we know we’re going to have bugs, and we know that produc6on is a unique environment,
then it’s logical that we should be on the lookout for bugs that happen SPECIFICALLY in
produc6on. And that means that we need to monitor our produc6on environment.

There are a few exis6ng, standard tools for doing this, but they’re not perfect, and I think they’re
a bit incomplete.

Excep6on repor6ng
@rofreg

For a lot of apps, the first line of defense is produc6on is excep6on repor6ng. Something like
Rollbar, or Sentry, or Airbrake, or the standalone “excep6on_no6fica6on” gem. These are tools
that can send you an alert any 6me that an unexpected Excep6on occurs somewhere in your
app.

And this is great, right? If our app explodes in some unexpected way, we need to know!
But there are a few really big weaknesses to excep6on repor6ng.

@rofreg
First of all, excep6on reports can be VERY noisy, especially for big apps. At scale, you will get a
lot of errors that are not your fault. People will submit requests with invalid string encodings, or
dates that don’t exist. People will scan your app for vulnerabili6es and submit tons of garbage
data. Lots of odd stuff.

And while you can tune your excep6on repor6ng to screen out some of these false alarms, in my
experience, there will always be new and exci6ng Excep6ons caused by really odd, unimportant
user behavior.

This bug is cri6cal

@rofreg
And because there are so many unimportant alerts, that means that the signal-to-noise ra6o of
excep6on repor6ng can some6mes be really low. When you have one cri6cal Excep6on in the
middle of 20 false alarms, it’s actually preNy easy to overlook it.

It’s like the boy who cried wolf. When something serious actually happens, you might not be
paying full aNen6on.

def say_hello_to(name)
 puts "Hello #(name)!"
end

@rofreg
Also, VERY importantly, excep6on repor6ng can only catch Excep6ons!
If you’re only looking for Excep6ons, there are en6re categories of bugs that you might miss,
where the code DOES run without crashing…

def say_hello_to(name)
 puts "Hello #(name)!"
end

> say_hello_to("Nellie")
Hello #(name)!

@rofreg
…but it returns the wrong result.

In this case, we have a method that’s supposed to print a person’s name, but because of a typo,
it prints the wrong thing.

It’s surprisingly easy for this kind of issue to slip by, because it’s not throwing an Excep6on that
would call aNen6on to itself.

Bug reports
@rofreg

Besides excep6on repor6ng, the last line of defense in produc6on is usually bug reports that
come directly from you users.
If something is wrong enough with your app, your users WILL probably tell you about it.

😠

@rofreg
But of course, there are big problems with this too.
First of all, it’s a horrible experience. Bugs make people frustrated and angry and confused. It
makes people lose trust in your app. No one likes using buggy soZware.

🤐

@rofreg
Second of all, a lot of people won’t bother to report issues. It takes 6me to write somebody an
email! If I see an obvious problem with your app or your website, 9 out of 10 6mes I’m just going
to leave your site. I’m not necessarily going to send you a nice bug report with repro steps,
y’know?

Not all problems are
user-facing

@rofreg
And of course, users can only report the problems that they can actually see. If you have a bug in
an internal system, or a background job, or something like that, it’s very possible that no one will
no6ce for quite a long 6me, and that the bug could cause lots of damage before anyone even
knows its there.

How can we catch
silent bugs?

@rofreg
So if something wasn’t caught by tes6ng, or by QA, or by excep6on repor6ng, or by a user’s bug
report, then how the heck are we supposed to know about it? How can we catch silent bugs?
And the answer is:

We can’t!

@rofreg
We can’t! Obviously we can’t. We can’t fix something that we don’t know about.

How can we catch
silent bugs?

@rofreg
So instead of asking ourselves how to catch “silent bugs”, we should ask ourselves this:

How can we turn
silent bugs into

noisy bugs?

@rofreg
How can we turn “silent bugs” into “noisy bugs”?

We need a system that
tells us when something

unexpected has happened

IDEA #4

@rofreg
We need a system that makes noise. We need a system that tells us when something
unexpected happens, so that we can inves6gate what went wrong.

$ bundle exec rspec

...

Finished in 6 minutes 36 seconds
1738 examples, 13 failures

@rofreg
Now, we’ve goNen preNy good at this in development! This is where test suites really shine,
right? When you make a change to your app and suddenly a dozen tests all fail, you know that
something unexpected has gone wrong, and you know that you need to look into it further to fix
it.

So what would be really useful is something that’s LIKE a test suite, but focused on produc6on.
Something that doesn’t test specific edge cases, but monitors your app for THE EXISTENCE OF
ISSUES IN GENERAL.

Time for a checkup!

@rofreg
And that’s where checkups come in.

Checkups are
tests for produc9on

@rofreg
Checkups are TESTS FOR PRODUCTION.

The same way that a TEST SUITE tells you when something breaks in DEVELOPMENT, a
CHECKUP SUITE tells you when something has broken in PRODUCTION.

Let me walk you through this.

Checkups declare
expecta9ons about how
your app should behave

STEP #1

@rofreg
First of all, to write a checkup, we need to declare some EXPECTATIONS about how our app
should behave.

Every user should have a
valid email address

EXPECTATION @rofreg
For example: I expect every user to have a valid email address.

Every user should have a
valid email address

EXPECTATION

Does every user have a
valid email address?

CHECKUP

@rofreg
A “checkup” is a block of code that helps help me verify this: DOES every user have a valid email
address?

I don’t actually know unless I check.

Checkups run
on a regular basis,

many 6mes per day

STEP #2

@rofreg
This “checkup” then runs on a REGULAR BASIS many 6mes per day, checking to see if anything
unusual has happened.

Does every user have a valid email address?

2:00pm ✅
3:00pm ✅
4:00pm ⚠

@rofreg
And this is important in produc6on! Because maybe all of my users had valid email addresses at
2pm…

Does every user have a valid email address?

2:00pm ✅
3:00pm ✅
4:00pm ⚠

@rofreg
…

Does every user have a valid email address?

2:00pm ✅
3:00pm ✅
4:00pm ⚠

@rofreg
…but when I check again a few hours later, that might not be true any more.

Even if I haven’t deployed anything new recently, it’s possible that a new bug may have bubbled
to the surface since my last deploy. A checkup can detect when that happens.

When a checkup fails,
it sends you an alert

so that you can inves6gate

STEP #3

@rofreg
Finally, if your checkup fails, then you need to be ALERTED so that you can inves6gate what
happened and fix the underlying bug.

Does every user have a valid email address?

2:00pm ✅
3:00pm ✅
4:00pm ⚠ ✉❗

@rofreg
Once you get that alert, you can start to figure out what the problem is.

That’s it!

@rofreg
And that’s it! That’s the whole idea. It’s simple, but it’s powerful.

Checkups help you
detect the symptom

so that you can
fix the cause

@rofreg
Checkups help you detect the SYMPTOM so that you can inves6gate and fix the CAUSE.

Checkups are the best tool that I know for discovering issues that you didn’t even know about.

It’s just like a checkup with a doctor in real life — if you do it regularly, you can detect problems
and fix them before they become bigger issues.

Mul6ple email support
CASE STUDY #1

@rofreg
To illustrate, let me give you a simple, real example that we had at Splitwise a few years ago.

class User < ApplicationRecord

end

@rofreg
At Splitwise, we have a User model.
And for a long 6me, it was a preNy simple User model. A user had one email address. Not very
complicated.

class User < ApplicationRecord
 has_many :email_addresses, autosave: true

end

@rofreg
And then one day, we decided to add support for mul6ple email addresses. It seemed like a
good, useful feature to add.

So we created a new “EmailAddress” model, and we added a “has_many” rela6onship so that one
User could have many EmailAddresses.

@rofreg
And as we polished up this feature and wrote more tests and such, we realized, oh right, we
should make sure that all users have AT LEAST ONE EmailAddress. That’s important.

class User < ApplicationRecord
 has_many :email_addresses, autosave: true

 # Make sure all users have at least one email address
 validates :email_addresses, presence: true
end

@rofreg
So we added a valida6on, in order to make sure that every user has AT LEAST ONE email
address. And it worked! Our tests passed, everything was great. And this is a preNy
straighsorward-looking bit of code, right? Like, Rails doesn’t have a “has_at_least_one”
rela6onship, but this is a preNy clear way to express that idea.

In fact, I actually checked before this talk: if you search Google for “rails has at least one”, this is
the standard Stack Overflow answer for Rails 4 and up.

And we wrote a whole bunch of tests to make sure that this worked as intended. If you tried to
delete a user’s last EmailAddress, the valida6on would not let you con6nue.

class User < ApplicationRecord
 has_many :email_addresses, autosave: true

 # Make sure all users have at least one email address
 validates :email_addresses, presence: true
end

🐜?
@rofreg

Now, again: we wrote tests for this. We looked at the code, and we thought hard, and we
covered all of the edge cases that we could think of.
So I want YOU to look at this code for a few seconds, and I want you to think about what might
go wrong.

And let me be specific here:
I am NOT asking you to actually figure out what the specific bug is here.
I’m asking you think about WHAT MIGHT HAPPEN if there IS a bug.
If there IS a bug, HOW will we find out? What is the thing that we will no6ce?

Checkups are great when
you have a hunch that

something might go wrong

@rofreg
Again, this is where checkups shine. They’re great when you think that something might go
wrong…

…or when you want
extra insurance that

everything works properly

@rofreg
…or when you just want extra insurance that everything works the way it’s supposed to.

This is the same reason that we write tests, right? Like, when I write code, I’m generally preNy
confident that it will work properly, but tests help me to have even MORE confidence in my
work. Checkups work the same way.

🤔

@rofreg
So in this case we thought: hmm, it would be preNy weird if someone ended up with NO email
addresses. Maybe we should write a checkup for that! So we wrote this:

Check for recently updated users with no email address
recently_updated_users =
 User.where(updated_at: 1.hour.ago...Time.now)

recently_updated_users.each do |user|
 raise_an_alarm_about(user) if user.email_addresses.none?
end

@rofreg
This is a checkup. It’s a very short, very simple liNle method.
First, we fetch all of the users who have recently updated their accounts.
Then, we iterate through those users and check to see if there are any Users with 0 email
addresses.
We run this once per hour.
If we find any Users who DON’T have any email addresses, then this checkup sends an alert to
our team so that we can inves6gate.

It’s 5 lines of code. It’s very, very simple.

Does every user have at least 1 email address?

Day 1 ✅
Day 2 ✅
Day 3 ⚠

@rofreg
And so we deployed our new feature, and we included this checkup to make sure that we hadn’t
missed anything. And for the first day or two, everything was totally great.

Does every user have at least 1 email address?

Day 1 ✅
Day 2 ✅
Day 3 ⚠

@rofreg

Does every user have at least 1 email address?

Day 1 ✅
Day 2 ✅
Day 3 ⚠

@rofreg
But aZer a few days, sure enough…

@rofreg
…our liNle checkup sent us an alert. There was a user who somehow ended up with 0 email
addresses.

@rofreg
And so we inves6gated! We looked through our logs for this user, and we realized that they
USED to have 2 email addresses, but that they had tried to delete BOTH of those email
addresses at the SAME TIME.

Race condi6on!
🏎

@rofreg
There was a race condi6on. One that we hadn’t an6cipated when we wrote our tests.

ada.lovelace@gmail.com
lovelace@yahoo.com

REQUEST #2
ada.lovelace@gmail.com

lovelace@yahoo.com

REQUEST #1
@rofreg

See, if you have a user with 2 email addresses…

ada.lovelace@gmail.com
lovelace@yahoo.com

REQUEST #2
ada.lovelace@gmail.com

lovelace@yahoo.com

REQUEST #1
@rofreg

…and you have TWO different requests that each delete ONE email address…

REQUEST #2REQUEST #1

Passes valida6on?
✅

Passes valida6on?
✅

ada.lovelace@gmail.com
lovelace@yahoo.com

ada.lovelace@gmail.com
lovelace@yahoo.com

@rofreg
…then both of those requests will actually pass valida6on! In request #1, the User s6ll has one
email address leZ, so Rails thinks it’s totally valid. The same is true in request #2.

REQUEST #2REQUEST #1

Passes valida6on?
✅

Passes valida6on?
✅

COMMIT COMMIT

ada.lovelace@gmail.com
lovelace@yahoo.com

ada.lovelace@gmail.com
lovelace@yahoo.com

@rofreg
And because it’s passed valida6on, those deleted email addresses then get fully deleted from the
database!

FINAL RESULT
ada.lovelace@gmail.com
lovelace@yahoo.com

@rofreg
And you end up with an invalid user with 0 email addresses.

@rofreg
That’s obviously a bug! And we had totally missed it. But because we wrote a checkup, that
helped us discover this bug as quickly as possible…

✅

@rofreg
…so that we could fix it right away.

How should you write
a checkup?

@rofreg
So. How should you write a checkup?

Check for recently updated users with no email address
recently_updated_users =
 User.where(updated_at: 1.hour.ago...Time.now)

recently_updated_users.each do |user|
 raise_an_alarm_about(user) if user.email_addresses.none?
end

@rofreg
Well, here’s that short liNle code sample again. And there are a couple of ways that we could
finish turning this into a fully-func6onal checkup.

lib/tasks/checkups/hourly.rake
called via `rake checkups:hourly`, at least once per hour

task check_for_users_without_email_addresses: :environment do
 recently_updated_users =
 User.where(updated_at: 1.hour.ago...Time.now)

 recently_updated_users.each do |user|
 raise_an_alarm_about(user) if user.email_addresses.none?
 end
end

@rofreg
One great way is to turn it into a rake task! This is how we write most of our checkups at
Splitwise. It’s easy to set up a rake task as a recurring cron job, so that it gets called on a regular,
repea6ng basis.

We use Heroku at Splitwise, so we use Heroku Scheduler for this, where it’s easy to configure a
rake task to get called once per hour, or once per day, or once every 10 minutes.

class User < ApplicationRecord
 after_commit :check_for_email_addresses
end

@rofreg
Another good op6on is as an `aZer_commit` hook. This is an Ac6veRecord callback that
executes aZer your model has been fully wriNen to the database. If you’ve accidentally wriNen
something incorrect to your database, this is an excellent place to catch it.

I should note, this comes at a cost — you’re adding overhead to every 6me you save an
Ac6veRecord object. That said, it gives you IMMEDIATE feedback about any errors, so it can be
a good op6on if you’re wri6ng a checkup about a mission-cri6cal part of your app.

UserCheckupJob.perform_later(user_id)

@rofreg
You can also kind of split the difference and perform checkups in a background job. This is great
way to perform checkups “on demand”, in response to a specific user ac6on, but without slowing
down your request too much.

✨ And more! ✨

@rofreg
And honestly, that’s just a start. Checkups are a preNy general idea, and there are a lot of other
places that you can use the same concept. For example, I’ve wriNen a few checkups that run
inline in controller ac6ons, or in service objects.

What kinds of problems
can checkups catch?

@rofreg
Okay, cool. Different ques6on. When should I write a checkup? What kinds of problems can
checkups catch?

Race condi6ons

@rofreg
Well, as we’ve already seen, checkups are VERY good at sniffing out race condi6ons.
I think race condi6ons are maybe the best example of a problem that is rare in development or
tes6ng, but common in produc6on.

🤯

@rofreg
Because if you’re like me, you probably find thinking about race condi6ons really hard! Our
brains aren’t really built to think in parallel threads. But in produc6on, that’s what your app faces
all the 6me.
It’s extremely common, not only to see many users trying to use your app at the same 6me, but
to see a SINGLE user trying to use your app from mul6ple threads at the same 6me.

Checkups can help you detect when this has caused something weird to happen.

Invalid persisted data

@rofreg
Invalid data is another thing that comes up commonly in produc6on that you really don’t see in
development. The longer that you run an app in produc6on, the more likely you are to
accumulate some weird, malformed, improper records in your data store, whether that’s MySQL
or Redis or sta6c files in S3.

FINAL RESULT
ada.lovelace@gmail.com
lovelace@yahoo.com

@rofreg
Here’s a real example. Let’s go back to that “0 email addresses” problem.

So we found this bug, and we wrote some new tests, and then we wrote a fix and we deployed
it. The problem was solved.

But! But but but. That only solved the problem going FORWARD. That fix did not solve the
EXISTING invalid records that were already living in our produc6on database. There were s6ll
several users in our database who didn’t have any email addresses! And we had to hand-fix those
records before the issue was fully resolved.

RAILS_ENV=test
@rofreg

Again, this is the kind of problem that’s super easy to overlook in development and in tes6ng. In
those environments, it’s rare to see old or malformed records, because you’re encouraged to
clear out your database very regularly.

RAILS_ENV=production
@rofreg

But that’s not true to produc6on. In produc6ons, you might have malformed records that were
caused by bugs that happened months ago or even YEARS ago.

Most of the 6me, that’s okay — almost every app has a couple of weird bits of data floa6ng
around somewhere. But some6mes, that malformed data is REALLY important to catch and to
fix, and checkups are a really excellent way to do that.

Ac6veRecord::Base#update_column

@rofreg
Also, just to check: raise your hand if you’ve ever used the `update_column` method in
Ac6veRecord.

Then there might be invalid data in your database! `update_column` skips valida6ons, so there’s
no guarantee that your data checks out.

Papering over minor issues

@rofreg
Checkups are also a great tool for when you KNOW there’s a bug, but you don’t know how to fix
it yet.

class BuggyModel < ApplicationRecord
 after_commit :check_for_issues
end

@rofreg
You can use a checkup to gather more diagnos6c informa6on about a bug that you don’t
understand.

class BuggyModel < ApplicationRecord
 after_commit :check_for_issues_and_fix_them
end

@rofreg
In some cases, you can even use a checkup to FIX the bug, if there’s a programa6c way to
resolve the issue once its been detected. This can buy you 6me while you con6nue to
inves6gate the underlying problem that’s causing the bug in the first place.

Ops + monitoring

@rofreg
Finally, checkups are really valuable if you’re someone who does any kind of ops work in
produc6on.
In fact, the whole idea of a “checkup” is basically borrowed from ops. Ops is all about checkups
— “Is the site s6ll up?” “Do we have an email backlog?” Checkups are all about evalua6ng system
health RIGHT NOW, and leHng you know if something’s wrong.

“Whoa, why have we processed
so many background jobs today?”

@rofreg
And the thing is, that kind of real-6me monitoring can be useful even if you DON’T do ops for
your applica6on. Checkups can alert you to unexpected changes in behavior. If your app usually
processes 1K background jobs a day, and suddenly it starts processing 100K a day, that COULD
be a bug in your code. Maybe there’s an infinite loop somewhere that’s enqueueing tons of
unnecessary jobs by accident.

We have
a whole suite
of checkups

@rofreg
At Splitwise, we have a whole suite of checkups like this.

📅 Daily
@rofreg

Some of them run daily.

📅
⏳

Daily
Hourly

@rofreg
Some of them run hourly.

📅
⏳

⏱

Daily
Hourly
Minute-ly

@rofreg
Some run every few minutes.

users.any? { |user| ... }

EXHAUSTIVE CHECKUPS

@rofreg
Some of our checkups are exhaus6ve, and check every single record that’s been recently
updated, because we don’t want to miss a single problem.

users.any? { |user| ... }

users.sample(100).any? { |user| ... }

EXHAUSTIVE CHECKUPS

SPOT-CHECK CHECKUPS

@rofreg
Some of our checkups are just spot-checks — they’re not meant to catch every single error that
happens, but they let us know if an error is occurring frequently enough to be a problem.

Preven6ng a crisis
CASE STUDY #2

@rofreg
I want to give you another example where a checkup totally saved my buN in real life, just to
drive home how BIG a difference a good checkup can make.

@rofreg
So my company, Splitwise, makes an app that helps people share expenses with each other. And
one of the most important things that Splitwise does is calculate your total balance with another
person. For example…

@rofreg

you owe
$56.24

“You owe Ada $56”.

It’s really important that we get this calcula6on right, and we have a bunch of tests to validate
that everything adds up correctly.

@rofreg

you owe
$56.24

you owe
$139.11

But one random Tuesday, everything suddenly went wrong.
All of a sudden, our code started returning two different answers for the same calcula6on.
So when I asked, “How much do I owe Ada?”, our Rails app might reply: “$56”.
But it ALSO might reply: “$139”.
The result was totally random. And I mean random: it was like flipping a coin, where you
randomly got one of two possible answers.

@rofreg

you owe
$56.24

you owe
$139.11

????????????????????

????????????????????

This is obviously a huge, user-facing problem.
It’s massively confusing, and seeing the wrong balance would destroy a user’s trust in our app.
Literally our ONE JOB is to keep track of your expenses for you.
If we can’t do that, then why use Splitwise at all?

No recent deploys

@rofreg
And here’s the kicker: we hadn’t deployed anything new all day.
In fact, we hadn’t touched anything related to this calcula6on in weeks.
We hadn’t changed ANYTHING. We had no reason to expect that something would go wrong.

@rofreg
But we had a checkup.

@rofreg

def run_balance_checkup
 return if cached_balance == balance_calculated_from_scratch

 raise_an_alarm_about(self)
 clear_cache!
end

In par6cular, we had a checkup for our caching layer.

See, we used caching to speed up some of our balance calcula6ons. And this checkup made sure
that the cache-dependent version of our `balance` method returned the same result as an
alternate implementa6on that did NOT use the cache. Any 6me that a person’s account was
updated, we ran this checkup on their account just a few moments later.

By comparing these two values, we could CONTINUOUSLY VERIFY that our cache-op6mized
“balance” method was working as expected. And if anything went wrong, we could raise an alarm
and clear the cache, geHng rid of the incorrect value.

Crisis averted!

@rofreg
Well in this case, that was enough to catch the problem!

Not only did our checkup task ALERT us about the problem immediately, it actually MITIGATED
the problem in real 6me while we figured out the cause and fixed the issue over the next few
hours.

In the end, no one even no6ced the bug. Instead of thousands of angry users, we had 0 angry
users.

(If you’re curious, this actually turned out to be a cri6cal infrastructure problem with a third-
party caching provider. We detected the problem so fast that we actually alerted THEM about
the problem before they had no6ced the problem themselves!)

Final thoughts

@rofreg
So. I want to share a few final thoughts about checkups as we wrap up here.

First of all…

This is a
work in progress

@rofreg
…this is a work in progress.

Checkups are just an idea that I made up.
As I men6oned at the start, this is my first big public talk.
And this is my first 6me really trying to spread this idea outside of my own workplace.

This is a
common problem

@rofreg
But I know for a fact that this is a common issue. I’ve talked to friends at a bunch of different
companies, and they all have SOMETHING like this — an internal system that double-checks
their produc6on environment to make sure certain things haven’t exploded.

The problem is, almost no one talks about those systems and those ideas in public. If you’re a
Rails developer building a new app, they way you learn this stuff is mostly through trial and error.
It’s not yet part of our standard discussion about how to build an app.

We don’t have any
vocabulary

around these issues

@rofreg
And in part, I think that’s because we don’t have words for it yet. We don’t have a pre-exis6ng
vocabulary about how to double-check our produc6on systems. And because we don’t have a
vocabulary…

We don’t have any
best prac9ces

around these issues

@rofreg
…we don’t have best prac6ces yet, either. We’re not thinking about this problem in a communal
way. We’re not learning from each other yet.

Checkups are
one good way to

frame the problem

@rofreg
My hope is that the idea of a “checkup” can be somewhere for you to start. I think it’s a good,
intui6ve framing for how to sniff out unexpected bugs in produc6on, and if you think about your
own apps through this lens, I think you’ll start to see how checkups can help you build
something that’s more robust and more healthy.

Think about adding
a checkup suite
to your own app

@rofreg
I honestly believe that every app should have a checkup suite. Just like you should have a test
suite! Like, you definitely CAN deploy a successful app without tests or without checkups, but if
you do, you’re leaving yourself blind to a lot of poten6al problems and headaches.

Where should I start?

@rofreg
Now, I realize that building a whole checkup suite may sound preNy in6mida6ng, so here’s a
sugges6on of one very simple place to start.

Ac6veRecord::Base#valid?

@rofreg
You might be familiar with Ac6veRecord’s “valid” method. You can call `.valid?` on an
Ac6veRecord object, and it will tell you whether that object passes valida6on or not.

Check for recently updated users that now fail validation
recently_updated_users =
 User.where(updated_at: 1.hour.ago...Time.now)

recently_updated_users.each do |user|
 raise_an_alarm_about(user) unless user.valid?
end

@rofreg
Well, start taking advantage of that! In just a few minutes, you can write a checkup that looks at
recently updated records in your database, then calls `.valid?` on each record, to make sure that
the persisted data s6ll passes valida6on.

Again, this is about 5 lines of code. It’s a preNy easy place to start. And if you run this on all of
your Ac6veRecord models, I’m confident that you will find some invalid records that managed to
weasel their way into your database. You’ll be surprised at what you find.

Once we f ind problems,
we can f ix them

@rofreg
And once you find those problems, you can start fixing them.

Ryan Laughlin
@rofreg

hNp://rofreg.com/talks

Again, my name is Ryan Laughlin.
I’m @rofreg on TwiNer, and you can find all these slides at rofreg.com/talks.
I really care about this idea, so I’d love to answer any ques6ons y’all have!

